Miscellaneous Examples

Example 11 Find the area of the parabola $y^2 = 4ax$ bounded by its latus rectum.

Solution From Fig 8.20, the vertex of the parabola $y^2 = 4ax$ is at origin (0, 0). The equation of the latus rectum LSL' is x = a. Also, parabola is symmetrical about the x-axis.

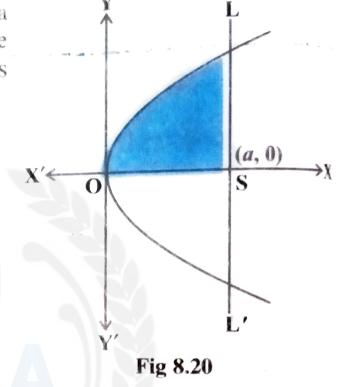
The required area of the region OLL'O = 2 (area of the region OLSO)

$$=2\int_0^a ydx = 2\int_0^a \sqrt{4ax} \ dx$$

$$= 2 \times 2 \sqrt{a} \int_0^a \sqrt{x} dx$$

$$= 4\sqrt{a} \times \frac{2}{3} \left[x^{\frac{3}{2}} \right]_0^a$$

$$=\frac{8}{3}\sqrt{a}\left[a^{\frac{3}{2}}\right]=\frac{8}{3}a^2$$

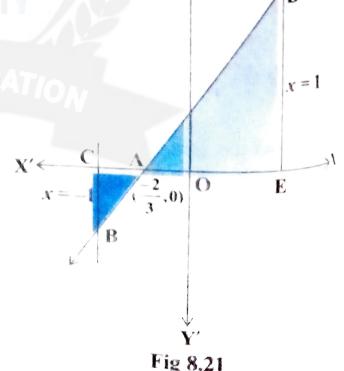


Example 12 Find the area of the region bounded by the line y = 3x + 2, the x-axis and the ordinates x = -1 and x = 1.

Solution As shown in the Fig 8.21, the line $X' \leftarrow$ y = 3x + 2 meets x-axis at $x = \frac{-2}{3}$ and its graph

lies below x-axis for $x \in \left(-1, \frac{-2}{3}\right)$ and above

x-axis for
$$x \in \left(\frac{-2}{3}, 1\right)$$
.



The required area = Area of the region ACBA + Area of the region ADEA

$$= \left| \int_{-1}^{\frac{-2}{3}} (3x+2) dx \right| + \int_{\frac{-2}{3}}^{1} (3x+2) dx$$

$$= \left| \left[\frac{3x^2}{2} + 2x \right]_{-1}^{\frac{-2}{3}} \right| + \left[\frac{3x^2}{2} + 2x \right]_{\frac{-2}{3}}^{1} = \frac{1}{6} + \frac{25}{6} = \frac{13}{3}$$

Example 13 Find the area bounded by the curve $y = \cos x$ between x = 0 and $x = 2\pi$.

Solution From the Fig 8.22, the required area = area of the region OABO + area of the region BCDB + area of the region DEFD.

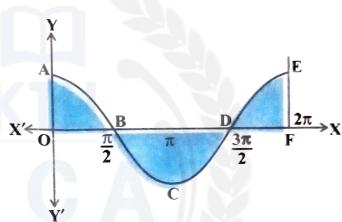


Fig 8.22

Thus, we have the required area

$$= \int_{0}^{\frac{\pi}{2}} \cos x \, dx + \left| \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos x \, dx \right| + \int_{\frac{3\pi}{2}}^{2\pi} \cos x \, dx$$

$$= \left[\sin x\right]_0^{\frac{\pi}{2}} + \left[\sin x\right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} + \left[\sin x\right]_{\frac{3\pi}{2}}^{2\pi}$$

$$=1+2+1=4$$

Example 13 Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by x = 0, x = 4, $x' \in O$ y = 4 and y = 0 into three equal parts.

Solution Note that the point of intersection of the parabolas $y^2 = 4x$ and $x^2 = 4y$ are (0, 0) and (4, 4) as

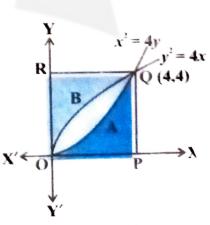


Fig 8.23

shown in the Fig 8.23.

Now, the area of the region OAQBO bounded by curves $y^2 = 4x$ and $x^2 = 4y$.

$$\int_{0}^{4} \left(2\sqrt{x} - \frac{x^{2}}{4} \right) dx = \left[2 \times \frac{2}{3} x^{\frac{3}{2}} - \frac{x^{3}}{12} \right]_{0}^{4}$$

$$=\frac{32}{3}-\frac{16}{3}=\frac{16}{3}$$
...

Again, the area of the region OPQAO bounded by the curves $x^2 = 4y$, x = 0, x = 1and r-axis

$$= \int_0^4 \frac{x^2}{4} dx = \frac{1}{12} \left[x^3 \right]_0^4 = \frac{16}{3} \qquad \dots (2)$$

Similarly, the area of the region OBQRO bounded by the curve $y^2 = 4x$, y-axis y = 0 and y = 4

$$= \int_0^4 x dy = \int_0^4 \frac{y^2}{4} dy = \frac{1}{12} \left[y^3 \right]_0^4 = \frac{16}{3} \qquad \dots (3)$$

From (1), (2) and (3), it is concluded that the area of the region OAQBO = area ofthe region OPQAO = area of the region OBQRO, i.e., area bounded by parabolas $y^2 = 4x$ and $x^2 = 4y$ divides the area of the square in three equal parts.

Example 14 Find the area of the region

$$\{(x, y): 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$$

Solution I et us first sketch the region whose area is to be found out. This region is the intersection of the following regions.

$$A_1 = \{(x, y) : 0 \le y \le x^2 + 1\},\,$$

$$A_y = \{(x, y) : 0 \le y \le x + 1\}$$

and

$$A_x = \{(x, y) : 0 \le x \le 2\}$$

P (0,1) x =

r = 2

The points of intersection of $y = x^2 + 1$ and y = x + 1 are points P(0, 1) and Q(1, 2). The points of intersection of y.

From the Fig 8.24, the required region is the shaded region OPQRSTO whose area = area of the region OTQPO + area of the region TSRQT

$$= \int_0^1 (x^2 + 1) dx + \int_1^2 (x + 1) dx$$
 (Why?)

APPLICATION OF INTEGRA

$$\left(\frac{x^2}{1+x}\right)^2$$

 $= \left[\left(\frac{1}{3} + 1 \right) - 0 \right] + \left[(2+2) - \left(\frac{1}{2} + 1 \right) \right] = \frac{23}{6}$

$$\left|\frac{1}{x} + x\right|^2$$

$$= \left[\left(\frac{x^3}{3} + x \right) \right]_0^1 + \left[\left(\frac{x^2}{2} + x \right) \right]_0^2$$

$$\prod_{i=1}^{2}$$

Summary

The area of the region bounded by the curve y = f(x), x-axis and the lines

$$x = a$$
 and $x = b$ ($b > a$) is given by the formula: Area = $\int_a^b y dx = \int_a^b f(x) dx$.

The area of the region bounded by the curve $x = \phi(y)$, y-axis and the lines

The area of the region bounded by the curve $x = \phi(y)$, y-axis and the lines y = c, y = d is given by the formula: Area = $\int_{c}^{d} x dy = \int_{c}^{d} \phi(y) dy$.

- The area of the region enclosed between two curves y = f(x), y = g(x) and the lines x = a, x = b is given by the formula,

 - Area = $\int_{a}^{b} [f(x) \tilde{g}(x)] dx$, where, $f(x) \ge g(x)$ in [a, b]
- If $f(x) \ge g(x)$ in [a, c] and $f(x) \le g(x)$ in [c, b], a < c < b, then